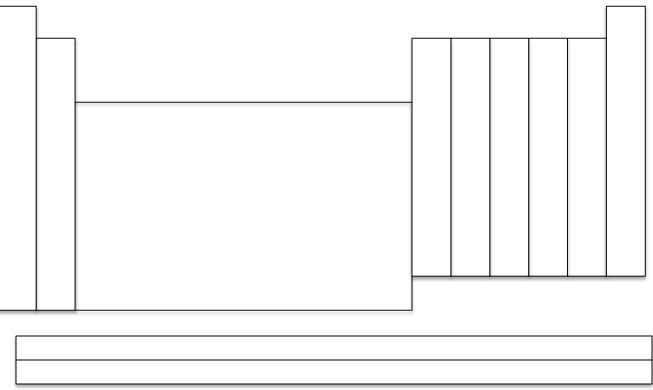
Unit 3: Periodic Table

Mrs. Snyder Honors Chem

Unit 1 Learning Objectives:

By the end of the unit students will be able to...

- Locate and state the important properties of the main chemical families including the alkali metals, alkaline earth metals, halogens, noble gases, lanthanides, actinides and transition metals.
- Explain and define the following periodic trends, and how they relate to atomic structure.
 - o Atomic Radius
 - o Ionization Energy
 - Electronegativity
 - o Ionic radius
- Draw Lewis Structures from Chemical Formulas
- Assign bond order
- Calculate the total number of valence electrons in a polyatomic ion
- Draw a Lewis Structure for Polyatomic Ions
- Assign formal charges to atoms and polyatomic ions
- Draw resonance structures for polyatomic ions
- Classify bonds as either ionic or covalent and as either polar or non-polar using electronegativity values.
- Assign shapes to molecules using the VSEPR Theory and draw the VSEPR diagrams for a molecule
- Classify molecules as polar or non-polar using shape
- Compare miscible, and immiscible, by definition and with example and determine based on polarity.


Monday	Tuesday	Tuesday Wednesday		Friday	
October 1	2	3	4	5	
Intro: Paint Chip Activity Notes: Periodic Trends	Lab: Periodic Trends	Notes: Lewis Structures	Notes: Lewis Structures	Chemical Families Activity	
8	9	10	11	12	
Chemical Families Presentations	Alien Periodic Table Challenge Activity	Notes: Bonding, Polarity and VSEPR Theory	Notes: Bonding, Polarity and VSEPR Theory	Lab: Lewis Structures	
15	16	17	18	19	
Review	UNIT 3 TEST Homework Packet Due				

Periodic Table Trends

Periodic Trends: _			
_			

Periodic Trend	Definition	What happens when you do down a group?	What happens when you go across a row?	Examples
Atomic				
Radius				
Ionization				
Energy				
Electronegat				
ivity				
Ionic Radius				

Summary of Periodic Trends

Lewis Structures and Bonding

Electron Dot Structures

Elements can be represented by **electron dot structures** to show the number of valence electrons. Recall, the number of valence electrons is equal to the group number. Only the valence electrons are shown, as these are the electrons that participate in bonding.

Example: Draw the electron dot structure for chlorine

Lewis Structure:

Ex: Draw the electron dot structure for carbon

Atoms will bond with each other in order to ________. In general, atoms will follow the _______ rule and share _______ so that they have ______ electrons in their valence shell. *Note: There are exceptions to this rule.

Example: Draw a Lewis Structure for the following compounds. The subscript in the formula indicates the number of atoms of each element in the compound. (ie, in Cl₂ the subscript "2" indicates that there are two chlorine atoms"

Rules for Drawing Lewis Structure:

- **Step 1**: Add up the number of valence electrons in all of the atoms.
- Step 2: Write down the most likely arrangements.

Central atom usually comes 1st in chemical equation (exception acids)

The central atom is the atom with the lowest ionization

Arrange the atoms symmetrically around the central atom

- **Step 3**: Place one electron pair between each pair of bonded atoms.
- **Step 4**: Complete the octets or duplet (H). If there are not enough electron pairs, form multiple bonds.

Step 5: Represent each bonded electron pair by a line.

Step 3. Represent each bonded electron pan	by a fine.
Cl ₂	SBr ₂
CI ₄	SiO_2
AsF_3	HCN
	Note: Hydrogen has a full valence shell with only two electrons.
	H C N
Lone Pairs:	

Bond Order =1 for a single bond, two electrons are shared

Bond Order= 2 for a double bond, four electrons are shared

Bond Order=3 for a triple bond, six electrons are shared

Bond Order: _____

Bond Order = 4 for a quadruple bond, eight electrons are shared.

Exceptions to the Octet Rule (Exceptions to having a full valence shell)

^{*} A compound my have more than one bond order. In this case, each type of bond is labeled separately.

Some elements can be stable in a compound when they do not have a full valence shell of eight electrons.
Electron Deficient : valence shell is unfilled with fewer than eight electrons. Ex. Boron can be stable with only <u>six</u> electrons in the valence shell
Ex. BF ₃
Expanded Octet : valence shell is <u>over</u> filled with more than eight electrons. Ex. Phosphorus can be stable with <u>ten</u> electrons in the valence shell.
Ex. PCl ₅
Ex. Sulfur can be stable with <u>twelve</u> electrons in the valence shell
Ex. SF ₆

Polyatomic IONS

Polyatomic ions are _____

When drawing the Lewis Structure for a polyatomic ion, add one electron for each negative charge and subtract one electron for each positive charge.

The charge on each atom in the compound can be determined by calculating the **formal charge**. The formal charges for all atoms must add up to the overall charge for the polyatomic ion.

Formal ChargeThe formal charge on each atom in a polyatomic ion can be calculated as follows:

Formal Charge = Number of valence e	electrons – number of unshared	electrons $-\frac{1}{2}$ shared electrons
Practice: Draw a Lewis Structure for th valence elections in the ion and calculat		
Ex. Ammonium NH ₄ ⁺		
Ex. Nitrate NO ₃ ⁻		
Resonance Structures:		
Ex. NO ₃ -		

Bonding and Polarity

Bond Type and Bond Polarity depend on the relative electronegativity values of atoms.

Electronegativity

Electronegativity (or the difference in electronegativity) helps to classify the bond type and bond polarity. To determine the different in electronegativity subtract the electronegativity values of the atoms in a bond.

	Electronegativity Values																
H 2.1																	He 0
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne 0
Na 0.9	Mg 1.2											Al 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0	Ar 0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 0
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 0
Cs 0.7	Ba 0.9	Lu 1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	Rn 0
Fr 0.7	Ra 0.9																

Covalent Bonds:

If the difference in electronegativity between two atoms in a bond is small (between 0 and 1.7), the bond will be *covalent*. Since the atoms are comparable to one another in terms of electronegativity, they each have a similar pull on the electrons and will SHARE the electrons.

Ionic Bonds:

If the difference in electronegativity between to atoms in a bond is large (1.8 or greater), the bond will be ionic. Electrons will be TRANSFERRED from the less electronegative atom to the more electronegative atom resulting in the formation of an ion. The attraction of the two ions forms an ionic bond.

Non-Polar Bonds:

If the difference in electronegativity is between 0 and 0.4, the bond is classified as *non-polar*. *The electrons are equally shared between the atoms in a bond*.

Polar Bonds:

If the difference in electronegativity is 0.5 or greater, the bond is classified as *polar*.

- All ionic bonds are polar since the electrons are transferred and each atom carries a full charge
- For a covalent bond, the electrons are unequally shared and are drawn from the less electronegative element towards the more electronegative element. The more

electronegative atom will carry a partial negative, and the less electronegative will carry a partial positive charge.

Summary of Bonding and Polarity

Bond Type	How are electrons distributed?	What is the difference in electronegativity?
Covalent		
Ionic		
Rond Polarity	How are electrons distributed?	What is the difference in

Bond Polarity	How are electrons distributed?	What is the difference in electronegativity?
Non-Polar		
Polar		

Distribution of Charge:

- For a **non-polar covalent** bond there is no distribution of charge
- For an **ionic bond** (all polar), the atom that gains electrons will be labeled with a negative charge, and the atom that loses electrons will be labeled with a positive charge.

•	For a polar covalent bond an arrow () will be drawn towards the more
	electronegative atom to show that the electrons are pulled towards that atom. The more
	electronegative atom will be labeled as partially negative () and the less
	electronegative atom will be labeled sas partially positive ()

Practice: Calculate the change in electronegativity (ΔEN), and classify the following bonds as covalen
or ionic and as non-polar or polar. Draw the bond and indicate the distribution of charge.

_	_
HV	H۵

Ex. NaCl

Ex. HBr

VSEPR Theory: Valence Shell Electron Pair Repulsion Theory

To determine the polarity of a molecule, the three-dimensional shape of the molecule must be considered. VSEPR theory predicts the three-dimensional shape of a molecule based on the number of atoms bonded to the central atom and the number of lone pairs on the central atom. The bonds and lone pairs around the central atom will be oriented as far as possible from each other to minimize electron repulsion.

Example Molecule	Lewis Structure	# of atoms bonded to the central atom	# lone pairs bonded to central atom	Shape	VSEPR Diagram	Polar or Non- Polar
CO ₂		2	0	Linear		Non-polar
BH ₃		3	0	Trigonal Planar		Non-Polar
CH ₄		4	0	Tetrahedra 1		Non-Polar
NH ₃		3	1	Trigonal Pyrimidal		Polar
H ₂ O		2	2	Bent		Polar
PCl ₅		5	0	Trigonal Bipyramid al		Non-Polar
SF ₆		6	0	Octahedral		Non-Polar

Polarity of Molecules based on the VSEPR shape

The VSEPR shape can be used to determine polarity of a molecule. A molecule with a "symmetrical" three-dimensional shape will be non-polar. A molecule with an "asymmetrical" three-dimensional shape will be polar.

Substances can be tested for polarity by mixing them with liquids of known polarity. Generally, "like
dissolves like" means that
Miscible:
Immiscible:
Practice : Draw the Lewis Structure and using VSEPR theory determine the shape of the structure.
Ex. CF ₄
Ex. PCl ₃
Ex. CS_2