Additional Practice Problems for Thermochemistry

(1) Calculate the heat of reaction: 4HNO $_3$ (l) \rightarrow 4NO $_2$ (g) + 2H $_2$ O (l) + O $_2$ (g) 1 257.6 KJ/mol

Steps:
$$(\Delta H = -348.2 \text{ kJ/mol})$$

 $(\Delta H = -348.2 \text{ kJ/mol}) - 2$
 $(\Delta H = -348.2 \text{ kJ/mol}) - 2$
 $(\Delta H = 66.4 \text{ kJ/mol}) - 2$
 $(\Delta H = 66.4 \text{ kJ/mol}) - 2$
 $(\Delta H = 571.6 \text{ kJ/mol}) - 3$

$$4 + NO_2(2) \rightarrow 2 + 2NZ(3) + 2NZ(3) + 602 \cdot (3) \Delta H = 6964 \times 1/moi$$

 $2NZ(3) \cdot 40Z(3) \rightarrow 4NO_2(3)$
 $2H_2(3) + 9Z(3) \rightarrow 2H_2O(3)$
 $\Delta H = 132.8 \times 1/moi$

(2) Calculate the heat of reaction using the Bond Energy. $4HI\left(g\right) +O_{2}\left(g\right) \rightarrow 2H_{2}O\left(1\right) +2I_{2}\left(g\right) +4488\text{ kg/mo}$

Lewis Structures:			
HI	O ₂	H ₂ O	I ₂
H-Ï:	0 = 0	H = 0 mm H	**************************************
H(H-T) +	0=0	4(11-0) 1	2(I.I)
4 (298) +	498	4 (464) +	
= 1690 kJ/mol = 2158 kJ/mol			

AH : broten - formed : 1690-2158 =-468 EJ/mol exother

endothermic

- (a) Label the catalyzed pathway and the uncatalyzed pathway.
- (b) What is the name of the highest energy point in a reaction?

 activated complex
- (c) What quantity is given the symbol ΔH? enthalpy, heat of 'eaction
- (d) What quantity is given the symbol Ea?

activation energy

(e) What is ∆H for the forward, uncatalyzed reaction? HIDOKT

DH = 132.8 kJ/moi

DH = - 571.6 kt/mol

1 H= 257 6 kJ/mol

- (f) What is ΔH for the forward, catalyzed reaction? 41001 T
- (g) What is ∆H for the reverse, uncatalyzed reaction? - 100 tJ
- (h) What is ΔH for the reverse, catalyzed reaction? - 100 kg
- (i) Is the forward reaction endothermic or exothermic? endothermic
- (j) Is the reverse reaction endothermic or exothermic? exothermic
- (k) What is E_a for the forward, uncatalyzed reaction? 4 200k \$
- (1) What is Ea for the forward, catalyzed reaction?
- + 150KJ (m) What is Ea for the reverse, uncatalyzed reaction?
- 7 100 FI (n) What is Ea for the reverse, catalyzed reaction?

t 50 k T